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Abstract
Entanglement in the ground state of the XY model on the infinite chain can be
measured by the von Neumann entropy of a block of neighbouring spins. We
study a double scaling limit: the size of the block is much larger than 1 but
much smaller than the length of the whole chain. The entropy of the block has
an asymptotic limit in the gapped regimes. We study this limiting entropy as a
function of the anisotropy and of the magnetic field. We identify its minima at
product states and its divergencies at the quantum phase transitions. We find
that the curves of constant entropy are ellipses and hyperbolas, and that they
all meet at one point (essential critical point). Depending on the approach to
the essential critical point, the entropy can take any value between 0 and ∞. In
the vicinity of this point, small changes in the parameters cause large change
of the entropy.

PACS numbers: 03.65.Ud, 02.30.Ik, 05.30.Ch, 05.50.+q

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement is a primary resource for quantum information processing [1–4]. It represents
the ability of using purely quantum effects to control one system by another. Stable and
large scale entanglement is necessary for scalability of quantum computation. In [3], the von
Neumann entropy of a subsystem was proposed as a measure of its entanglement. Since then,
essential progresses have been achieved in the understanding of entanglement as applied to

1751-8113/07/298467+12$30.00 © 2007 IOP Publishing Ltd Printed in the UK 8467

http://dx.doi.org/10.1088/1751-8113/40/29/019
mailto:fabio@ictp.it
mailto:itsa@math.iupui.edu
mailto:jinbq@wzu.edu.cn
mailto:korepin@insti.physics.sunysb.edu
http://stacks.iop.org/JPhysA/40/8467


8468 F Franchini et al

various quantum systems. One of them was the observation made in [5] that for spin chains
the entropy of a large block of spins behaves differently for gapless and gapfull models.
Singularity of the entropy at phase transitions was previously discovered in [6]. In many
dimensions, entropy scales as the area of the boundary [7–11]. For one-dimensional systems,
the entropy was calculated using conformal field theory methods in [12] and it was confirmed
that for gapless models it scales logarithmically with the size of the block. This behaviour was
related to the second law of thermodynamics in [13]. One should also note that the entropy of
a large block of spins behaves differently in the ferromagnetic and in the anti-ferromagnetic
XXX [14]. For gapped theories, the entropy of a large block of spins reaches a limit, i.e. it
saturates [5]. This was explicitly described for AKLT models in [15].

In this paper, we calculate the entanglement of the ground state of the XY model (on the
infinite chain) by considering the von Neumann entropy of a block of L neighbouring spins in
the limit L → ∞. We use the results of [16–18] and extend them to the whole phase diagram
of the model6. These results were derived using a determinant representation of entanglement
introduced in [19, 20]. The entanglement of the Ising model, a subsystem of the XY model
we consider here, was described in [21].

The XY model is a particularly important system for quantum information, for his
analytical tractability on one side and for the possibility of physical realization on the other
side. Optical lattices and other physical systems [22–24] can be described by this model and
the former, in particular, are considered as very promising candidates as hardware constituents
of quantum computers.

The Hamiltonian of the XY model is

H = −
∞∑

n=−∞

[
(1 + γ )σ x

n σ x
n+1 + (1 − γ )σ y

n σ
y

n+1 + hσ z
n

]
. (1)

Here, γ � 0 is the anisotropy parameter, σx
n , σ

y
n and σ z

n are the Pauli matrices and h � 0 is
the magnetic field. The model is clearly symmetric under the transformation γ → −γ or
h → −h. In [16, 18] only the case 0 � γ � 1 was discussed; here we can confirm that those
results can be directly extended for γ > 1 by analytical continuation.

The XY model was solved in [25–28]. The methods of Toeplitz determinants and
integrable Fredholm operators were used for the evaluation of correlation functions, see
[27, 29–33]. The idea to use the determinants for the calculation of the entropy was put
forward in [19].

The solution of the XY model looks differently in three cases:

Case 2 is defined by h > 2: this is a strong magnetic field.
Case 1A is defined by h < 2 and γ >

√
1 − (h/2)2: moderate magnetic field for small

anisotropy, and includes zero magnetic field for large anisotropy.
Case 1B is defined by h < 2 and γ <

√
1 − (h/2)2: it describes weak magnetic field,

including zero magnetic field in the small anisotropy regime.

At γ = 0 and for h � 2, the model is known as the isotropic XY model (or XX model)
and its spectrum is gapless. The entropy for this critical phase was calculated in [19]. The
boundary between cases 2 and 1A (h = 2) is also critical. In the rest phase diagram, the
spectrum of the XY model is given by [26, 27]

εk = 4
√

(cos k − h/2)2 + γ 2 sin2 k, (2)

where −π < k < π . We draw the phase diagram and the three cases we are considering in
figure 1.
6 Moreover, in the appendix we explain how these results can be used to calculate the entanglement of the XY model
in a staggered magnetic field.
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Figure 1. Phase diagram of the anisotropic XY model in a constant magnetic field (only γ � 0
and h � 0 shown). The three cases 2, 1A, 1B, considered in this paper, are clearly marked. The
critical phases (γ = 0, h � 2 and h = 2) are drawn in bold lines (red, online). The boundary
between cases 1A and 1B, where the ground state is given by two degenerate product states, is
shown as a dotted line (blue, online). The Ising case (γ = 1) is also indicated as a dashed line.

At the boundary between cases 1A and 1B (h = 2
√

1 − γ 2), the ground state can be
expressed as a product state as it was discovered in [34]. The ground state is in fact doubly
degenerated:

|GS1〉 =
∏

n∈lattice

[cos(θ)|↑n〉 + sin(θ)|↓n〉],

|GS2〉 =
∏

n∈lattice

[cos(θ)|↑n〉 − sin(θ)|↓n〉]. (3)

Here, cos2(2θ) = (1 − γ )/(1 + γ ) and |↑n〉, |↓n〉 are the eigenstates of the operator σ z
n at the

nth lattice site. The role of factorized states such as these was emphasized in [29, 35–37].
Let us mention that even on this line the rest of the energy levels are separated by a gap and
correlation functions decay exponentially. The boundary between cases 1A and 1B is not a
phase transition.

2. Block entropy

In general, we denote the ground state of the model by |GS〉. We consider the entropy of a
block of L neighbouring spins: it measures the entanglement between the block and the rest
of the chain [3, 5]. We treat the whole ground state as a binary system |GS〉 = |A&B〉. The
block of L neighbouring spins is subsystem A and the rest of the ground state is subsystem B.
The density matrix of the ground state is ρAB = |GS〉〈GS|. The density matrix of the block
is ρA = T rB(ρAB). The entropy S(ρA) of the block is

S(ρA) = −T rA(ρA ln ρA). (4)

Note that each of the ground states (3) is factorized and has no entropy.
To express the entropy we need the complete elliptic integral of the first kind,

I (k) =
∫ 1

0

dx√
(1 − x2)(1 − k2x2)

(5)

and the modulus

τ0 = I (k′)/I (k), k′ =
√

1 − k2. (6)
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The magnetic field and anisotropy define the elliptic parameter k:

k =




γ /
√

(h/2)2 + γ 2 − 1, case 2√
(h/2)2 + γ 2 − 1/γ, case 1A√
1 − γ 2 − (h/2)2/

√
1 − (h/2)2, case 1B,

(7)

where k vanishes at large magnetic fields (h → ∞), at γ = 0 for h > 2 and at the boundary
between cases 1A and 1B (h = 2

√
1 − γ 2). In all these regions of the phase diagram, the

ground state of the system is given by product states (a ferromagnetic state in the first two
cases and the doubly degenerate state (3) for the latter). At the phase transitions (h = 2 and
γ = 0, h < 2), the elliptic parameter k = 1.

In paper [16], we used determinant representation for the evaluation of the entropy. The
zeros of the determinant form an infinite sequence of numbers:

λm = tanh

[(
m +

1 − σ

2

)
πτ0

]
, (8)

where σ = 1 in case 1 and σ = 0 in case 2 and m is an integer. Note 0 < λm < 1 and λm → 1
as m → ∞.

These zeros allowed us to represent the entropy as a convergent series in [16]:

S(ρA) =
∞∑

m=−∞
(1 + λm) ln

2

1 + λm

. (9)

Peshel also obtained series (9) in cases of the non-zero magnetic field, see [17].7 He summed
it up into

S(ρA) = 1

6

[
ln

4

kk′ + (k2 − k′2)
2I (k)I (k′)

π

]
, case 2, (10)

S(ρA) = 1

6

[
ln

(
k2

16k′

)
+ (2 − k2)

2I (k)I (k′)
π

]
+ ln 2, case 1A. (11)

In our paper [16], we have shown that equation (9) is valid for all three cases, which allowed
us to sum up series (9) in the case of the weak magnetic field (including the zero magnetic
field) as well:

S(ρA) = 1

6

[
ln

(
k2

16k′

)
+ (2 − k2)

2I (k)I (k′)
π

]
+ ln 2, case 1B, (12)

obtaining the same expression as in (11), but with a different definition of k as from (7). The
rigorous proof and the precise history is given in paper [18]. In addition to what was reported
there, here we can confirm that all these results are valid also for γ > 1.

3. Analysis of the entropy

Now we can study the range of variation of the limiting entropy. We find a local minimum
S(ρA) = ln 2 at the boundary between cases 1A and 1B (h = 2

√
1 − γ 2). This is the case of

the doubly degenerated ground state (3) and it is consistent with [38], where it was shown that
when the ground state becomes a superposition of two product states with different quantum
numbers, then the entropy of a subsystem turns into ln 2.

7 In comparing with the results of [17], the reader should keep in mind that Peshel calculated the entropy per
boundary, therefore, his results differ by a factor of 2 compared to those in this paper.
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Figure 2. The limiting entropy as a function of the magnetic field at the constant anisotropy
γ = 1/2. The entropy has a local minimum S = ln 2 at h = 2

√
1 − γ 2 and the absolute minimum

for h → ∞ where it vanishes. S is singular at the phase transition h = 2 where it diverges to +∞.
The three cases are marked.

Figure 3. The limiting entropy as a function of the anisotropy parameter at the constant vanishing
magnetic field h = 0. The entropy has a minimum S = ln 2 at γ = 1 corresponding to the
boundary between cases 1A and 1B. S diverges to +∞ at the phase transition γ = 0.

The absolute minimum (S = 0) is achieved at infinite magnetic field or at γ = 0 for
h > 2, where the ground state becomes ferromagnetic (i.e. all spins are parallel). The entropy
diverges to +∞, i.e. has singularities, at the phase transitions: h = 2 or γ = 0 and h < 2. To
show this behaviour of the limiting entropy, we plot it as a function of the magnetic field h at
a constant anisotropy γ = 1/2 in figure 2.

We provide a plot of the entropy as a function of γ at a constant (vanishing) magnetic
field (h = 0) in figure 3, where the local minimum S = ln 2 is again visible at γ = 1.
Figure 4 is a three-dimensional plot of the entropy as a function of both the anisotropy
parameter γ and the external magnetic field h, and all the features discussed so far are visible.

3.1. The Ising point

The degenerate product states case (3) is particularly interesting. For h = 0, γ = 1, the XY

model reduces to the Ising model and the ground state (3) is given by the Bell–Pair states:
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Figure 4. A three-dimensional plot of the limiting entropy as a function of the anisotropy parameter
γ and the external magnetic field h. The local minimum S = ln 2 at the boundary between cases
1A and 1B is visible and marked by a continuum line. S diverges to +∞ at the phase transitions
h = 2 and γ = 0, h � 2. The entropy takes every positive value in the vicinity of the essential
critical point (h, γ ) = (2, 0).

Figure 5. The limiting entropy as a function of the magnetic field at the Ising point γ = 1. The
entropy has a local minimum S = ln 2 at h = 0 and the absolute minimum for h → ∞ where it
vanishes. S is singular at the phase transition h = 2 where it diverges to +∞.

|GS1〉 =
∏

n∈lattice

1√
2
(|↑n〉 + |↓n〉),

|GS2〉 =
∏

n∈lattice

1√
2
(|↑n〉 − |↓n〉).

(13)

We plot the entropy as a function of the magnetic field at the Ising point γ = 1 in figure 5.
One can note that the local minimum S = ln 2 is achieved at h = 0.

3.2. The essential critical point

Another interesting limit is reached around the point γ = 0, h = 2. This point belongs to both
the critical phases of the XY model, so the entropy does not have an analytical expression
(fixed value) on this point, but we can study the behaviour of S(ρA) in the vicinity of this point.
We already studied a couple of trajectories reaching this critical point: along the boundary
between cases 1A and 1B (h = 2

√
1 − γ 2), the entropy is on its local minimum S = ln 2.
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Figure 6. A contour plot of the limiting entropy near the essential critical point h = 2, γ = 0.
Regions of similar colours have similar entropy values and the lines where colours change are the
lines of constant entropy. S(ρA) diverges to +∞ on the critical lines h = 2 and h < 2, γ = 0.
One can see that near the essential critical point the lines of constant entropy grow denser.

Along the critical lines (h = 2 and γ = 0 for h < 2) the entropy is divergent, while for
γ = 0 and h > 2 the ground state is ferromagnetic and the entropy is 0. Since the limit of the
entropy reaching the point (h, γ ) = (2, 0) does not exist (it is direction-dependent), we call
this point the essential critical point. In the next section, we study the vicinity of this point and
show that depending on the direction of approach the entropy can take any positive value. In
figure 6, we present a contour plot of the entropy around the essential critical point. From this
plot, one can see that the entropy can assume a wide range of values near the point.

4. Ellipses and hyperbolas of constant entropy

We now look for curves of constant entropy. Since the entropy depends only on the elliptic
parameter (7), the curves of constant entropy are the curves of constant k. Such trajectories are
easily found and the family of curves of constant entropy can be written in terms of a single
parameter κ:

case 2

{
h > 2:

(
h

2

)2

−
(

γ

κ

)2

= 1, 0 � κ < ∞ (14)

case 1A

{
h < 2,

γ >
√

1 − (h/2)2
:

(
h

2

)2

+

(
γ

κ

)2

= 1, κ > 1 (15)

case 1B

{
h < 2,

γ <
√

1 − (h/2)2
:

(
h

2

)2

+

(
γ

κ

)2

= 1, κ < 1. (16)

For h > 2 (case 2), the curves of constant entropy are hyperbolas, while for h < 2 (cases 1A
and 1B) they are ellipses.
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Each point in the phase diagram of the XY model belongs to one of these curves. By
selecting a value of the parameter κ , we select a family of points with the same elliptic
parameter k in (7). There is a one-to-one correspondence between k and κ:

k =
√

κ2

1 + κ2
k′ =

√
1

1 + κ2
case 2 (17)

k =
√

κ2 − 1

κ2
k′ = 1

κ
case 1A (18)

k =
√

1 − κ2 k′ = κ case 1B. (19)

We recognize that κ = 1, as the boundary between cases 1A and 1B is the curve where the
ground state can be expressed as a doubly degenerate product state (3).

It is important to note that this curve has all the essential critical points (h, γ ) = (2, 0) in
common. This means that starting from any point in the phase diagram of the XY model, one
always reaches the essential critical point by following a curve of constant entropy.

For h < 2, the entropy has a minimum at ln 2 and diverges to +∞ approaching the critical
line h = 2. For h > 2, S(ρA) decreases monotonically from +∞ near the critical line to 0 at
infinite magnetic field. Beside the critical lines, the entropy is a continuous function, so its
range is the positive real axis.

This means that, depending on the direction of approach, the entropy assumes every
positive number near the essential critical point, since every ellipse or hyperbola of constant
entropy passes through that point. In other words, a small deviation from the essential critical
point can bring a big change in the value of the entropy. This is very important from the
point of view of quantum control because it allows us to change dramatically the entanglement
(and hence the quantum computing capabilities) with small changes in the parameters of the
system.

It is easy to express the entropy in terms of the parameter κ defining the ellipses and
hyperbolas of constant entropy:

S(ρA) = 1

6

[
ln

4(κ2 + 1)

κ
+

2

π

κ2 − 1

κ2 + 1
I

(√
κ2

κ2 + 1

)
I

(√
1

κ2 + 1

)]
, case 2,

S(ρA) = 1

6

[
ln

κ2 − 1

16κ
+

2

π

(κ2 + 1)

κ2
I

(√
κ2 − 1

κ2

)
I

(
1

κ

)]
+ ln 2, case 1A,

S(ρA) = 1

6

[
ln

1 − κ2

16κ
+

2

π
(κ2 + 1)I (

√
1 − κ2)I (κ)

]
+ ln 2, case 1B.

(20)

5. Entropy approaching the critical lines

Using the formulae of the previous section, we are now in a position to discuss the divergences
of the entropy near the critical phases. General results exist in these cases based on a conformal
field theory approach [12] and specific results were derived for the isotropic case (γ = 0)

in [19]. We know that in the double-scaling limit we are considering, the entropy diverges
logarithmically with the size of the block. The coefficient of this logarithmical divergence can
be calculated by knowing the central charge of the corresponding conformal field theory at the
critical point [12].

Setting κ = 0 or κ = ∞, the ellipses and hyperbolas of constant entropy (16) collapse
into the critical lines, i.e. a vertical line at γ = 0 or a horizontal line at h = 2, respectively.
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Table 1. Recap of the results with the entropy in different regions of the phase diagram, the curves
(ellipses and hyperbolas) of constant entropy and the relationship between the elliptic parameter k
and the parameter κ defining the family of curves.

Region S(ρA) Curves of constant S Range of parameters

2 : h > 2 1
6

[
ln 4

kk′ + 2(k2−k′2)I (k)I (k′)
π

] (
h
2

)2 − ( γ
κ

)2 = 1

0 � k < 1
0 � κ < ∞
k =

√
κ2

1+κ2

1A :

{
h < 2,

γ >
√

1 − (h/2)2
1
6

[
ln k2

16k′ + 2(2−k2)I (k)I (k′)
π

]
+ ln 2

(
h
2

)2
+

( γ
κ

)2 = 1

0 < k < 1
κ > 1

k =
√

κ2−1
κ2

1B:

{
h < 2,

γ <
√

1 − (h/2)2
1
6

[
ln k2

16k′ + 2(2−k2)I (k)I (k′)
π

]
+ ln 2

(
h
2

)2
+

( γ
κ

)2 = 1
0 < k < 1

κ < 1

k = √
1 − κ2

γ =
√

1 − (h/2)2 ln 2
(

h
2

)2
+ γ 2 = 1

k = 0
κ = 1

Using (20), we can study how the entropy diverges approaching these lines. Using case 1B in
(20), we can take κ → 0 to find

S(κ → 0, h < 2) ∼ −1

3
ln

(κ

2

)
+ · · ·

= −1

3
ln

(γ

2

)
+

1

6
ln[1 − (h/2)2] + · · · (21)

which is consistent with the results obtained in [19] for the isotropic case (γ = 0).
We can investigate how the entropy approaches the critical line h = 2 from below and

from above. In the former case, we shall set κ → ∞ in case 1A of (20):

S(κ → ∞, h < 2) ∼ 1

3
ln

(κ

2

)
+ · · ·

= −1

6
ln[1 − (h/2)2] +

1

3
ln

(γ

2

)
+ · · · . (22)

In the latter case, for a direction almost parallel to the critical line h = 2, but slightly above it,
we take κ → ∞ in case 2 of (20):

S(κ → ∞, h > 2) ∼ 1
3 ln(4κ) + · · ·

= − 1
6 ln[(h/2)2 − 1] + 1

3 ln(4γ ) + · · · . (23)

These results are in agreement with the conclusion of [12].

6. Conclusions

We analysed the entanglement in the ground state of the XY model on the infinite chain
by studying the von Neumann entropy S(ρA) of a block A of neighbouring spins. This
entropy is an effective measure of the quantum computing capabilities of a system and plays
a fundamental role in the field of quantum information.

Using previously known results for the entropy in the limit of a large block of spins
[16–18], we studied the behaviour of S(ρA) in the phase diagram of the XY model (see
table 1). We found that for h < 2, the entropy has a local minimum S = ln 2 on the curve
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(h/2)2 + γ 2 = 1. On this line the ground state is a doubly degenerate linear combination of
product states. The entropy diverges to +∞ at the phase transitions h = 2 and γ = 0, h < 2.
For h > 2, the entropy reaches the absolute minimum at infinite magnetic field h → +∞ and
for γ = 0, i.e. when the ground state is ferromagnetic. S(ρA) diverges to +∞ on the critical
line h = 2 and it is continuous otherwise.

We identified a set of curves (ellipses and hyperbolas) of constant entropy. They are given
in (14)–(16). All these curves have one point in common that we decided to call the essential
critical point: (h, γ ) = (2, 0). The fact that all the curves of constant entropy pass through
one point, together with the fact that the range of the entropy as a function of γ and h is the
positive real axis, means that the entropy can assume any real positive value near the essential
critical point, depending on the direction of approach. In turn, this means that the essential
critical point is very important for quantum control in that small changes in the parameters
can change the entanglement dramatically.

With this work, we conclude the analysis of the asymptotic von Neumann entropy for the
bi-partite one-dimensional XY model. We covered the whole phase diagram (including γ > 1)
focusing on the sector h � 0 and γ � 0; since the model is invariant under the substitution
γ → −γ or h → −h, the results for the entanglement can be extended immediately to the
negative values of the anisotropy parameter γ or of the magnetic field h.

Finally, we note that the work done so far on the XY model in a constant magnetic field
allows us to calculate the bi-partite entropy of the XY model in a staggered magnetic field as
well. As we discuss in the appendix, there is an exact mapping between these two models.
Therefore, the knowledge of the entanglement for one of the models automatically gives the
entanglement for the other. We give some details in the appendix.
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Appendix. XY model in a staggered magnetic field

It is a well-known fact in the theory of integrable models that there is an exact mapping
between the traditional XY model in the constant magnetic field described by Hamiltonian (1)
and the XY model in the staggered magnetic field:

H′ = −J

∞∑
n=−∞

(1 + γ ′)σ x
n σ x

n+1 + (1 − γ ′)σ y
n σ

y

n+1 + (−1)nh′ σ z
n . (A.1)

This mapping is achieved by performing a rotation of every other spin along the
x-direction. To identify the two Hamiltonians, one also needs to substitute γ → 1/γ 8

and to rescale the magnetic field and the Hamiltonian by a factor of 1/γ and γ , respectively:

γ ′ = 1/γ, h′ = h/γ, J = γ. (A.2)

In the main body of this paper, we analysed the entanglement of the XY model in a
constant magnetic field (1). The results we derived can be applied directly to calculate the
bi-partite entanglement of the XY model in a staggered field (A.1). All formulae are valid and

8 Note that the large anisotropy regime is so mapped into the small anisotropy regime and vice versa.
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Figure A1. Phase diagram of the anisotropic XY model in a staggered magnetic field (only γ ′ � 0
and h′ � 0 shown). The three cases 2, 1A, 1B, considered in this paper, are clearly marked. The
critical phase (h′ = 2γ ′) is drawn as a bold line (red, online). The boundary between cases 1A
and 1B, where the ground state is given by two degenerate product states, is shown as a dotted line
(blue, online).

to calculate the entropy for a staggered field one only needs to take the appropriate result and
perform the substitutions (A.2).

Using (A.2), the spectrum of the XY model in a staggered magnetic field is

εk =
√

(γ ′ cos k − h′/2)2 + sin2 k. (A.3)

From this, we see that the critical phase h = 2 is mapped to the line h′ = 2γ ′.
Therefore, the mapping of the different cases and the definitions of the elliptic parameter

for this model are

case 2 {h′ > 2γ ′: k ≡ 1/
√

(h′/2) − γ ′2 + 1, (A.4)

case 1A

{
h′ < 2γ ′,

γ ′ <
√

1 + (h′/2)2
: k ≡

√
(h′/2) − γ ′2 + 1, (A.5)

case 1B

{
h′ < 2γ ′,

γ ′ >
√

1 + (h′/2)2
: k ≡

√
γ ′2 − (h′/2)2 − 1√

γ ′2 − (h′/2)2
. (A.6)

We draw the phase diagram of the XY model in a staggered field and indicate the three
cases in figure A1. With definitions (A.4)–(A.6), one can plug the elliptic parameter into
(10)–(12) and use the other results of this paper to calculate the entropy of the XY model in a
staggered magnetic field.
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Popkov V, Salerno M and Schütz G 2005 Phys. Rev. A 72 032327
[15] Fan H, Korepin V and Roychowdhury V 2004 Phys. Rev. Lett. 93 227203
[16] Its A R, Jin B-Q and Korepin V E 2005 J. Phys. A: Math. Gen. 38 2975
[17] Peschel I 2004 J. Stat. Mech. P12005
[18] Its A R, Jin B-Q and Korepin V E 2006 Preprint quant-ph/0606178
[19] Jin B-Q and Korepin V E 2004 J. Stat. Phys. 116 79
[20] Keating J P and Mezzadri F 2004 Commun. Math. Phys. 252 543
[21] Michalakis S and Nachtergaele B 2006 Preprint math-ph/0606018
[22] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[23] Verstraete F, Martı́n-Delgado M A and Cirac J I 2004 Phys. Rev. Lett. 92 087201
[24] Angelakis D G, Santos M F and Bose S 2006 Preprint quant-ph/0606159
[25] Lieb E, Schultz T and Mattis D 1961 Ann. Phys. 16 407
[26] Barouch E and McCoy B M 1971 Phys. Rev. A 3 786
[27] Barouch E, McCoy B M and Dresden M 1970 Phys. Rev. A 2 1075
[28] Abraham D B, Barouch E, Gallavotti G and Martin-Löf A 1970 Phys. Rev. Lett. 25 1449
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